
Implementing the Word2Vec Paper
A look at a classic NLP paper

Ibrahim Habib

2025-04-24

Table of contents

1 About Embeddings 2
1.1 One-hot Encoding Problems . 2

1.1.1 Quality . 2
1.1.2 Cost . 3

1.2 Vector Representation . 3

2 Summarizing the Paper 3

3 Data Preparation 5

4 Model Definition 10

5 Training the Model 11

6 Conclusion 13

In 2013, the Efficient Estimation of Word Representations in Vector Space paper was released
introducing two new model architectures for generating vector representations (or embeddings)
of words. While today more advanced models are in use, the Word2vec paper remains a popular
classic that has been cited over 40,000 times.

In this post, we will implement the Continous Bag of Words (CBOW) model, one of the two
architectures introduced in the paper. The goal of this post is to serve as a straightforward
example of implementing a paper.

1

https://arxiv.org/abs/1301.3781

1 About Embeddings

Embeddings is a smart technique to encode and represent language. The problem with tra-
ditional one-hot encoding is that it doesn’t carry any sense of meaning about the captured
words. The assignment from words to vector is arbitrary and relationships and similarities
between words are not captured by the representation.

1.1 One-hot Encoding Problems

I want you to imagine with me the pain of building a model on a downstream task while
representing words with one-hot encoding. Imagine that we are building a very simple binary
classification model that takes as input a single word and predicts positive or negative sentiment
(a trivial task). This model will pass the one-hot encoded vector to a single linear layer (note
that the argument remains the same for deeper models). We will consider the deficiency of
such representation in two aspects: quality and cost.

1.1.1 Quality

First I want to establish that this model will simply return for each word in the class which
has the most number of occurrences in the downstream training data. Suppose that the vocab
size is 5 and that a certain word 𝑤 is represented by the vector 𝑣𝑤. Suppose that the first
index of 𝑣𝑤 is 1 and the rest are 0.

𝑣𝑤 = [1, 0, 0, 0, 0]

After passing the vector to the linear layer, the output will be:

𝑜 = 𝑤1 ∗ 1 + 𝑤2 ∗ 0 + 𝑤3 ∗ 0 + 𝑤4 ∗ 0 + 𝑤5 ∗ 0 + 𝑏 = 𝑤1 + 𝑏

Where 𝑤𝑖 is the weight of the 𝑖𝑡ℎ word in the vocabulary and 𝑏 is the bias.

To generalize, give a vector 𝑣𝑤 of size 𝑛 where the 𝑖𝑡ℎ index is 1 and the rest are 0, the output
of the linear layer will be:

𝑜 = 𝑤𝑖 + 𝑏

So basically, the model is memorizing for each and every word it sees the expected output. No
features, no understanding, no learning. It’s just an expensive lookup table.

2

Why is that bad? Downstream tasks tend to have much smaller datasets than the huge
language datasets used to build word representations. Thus, many words will not be seen in
the downstream task, and our table will just pick up a random class.

Consider this example which we will revisit later. Suppose that the downstream dataset
contains the word “hunger” and successfully predicts it as negative. During inference, the
model encounters the word “famine” which is not present in the training data. The model will
have no idea what to do with it and will randomly pick a class. This is a problem because
“famine” is very similar to “hunger” yet the model can’t realize that.

1.1.2 Cost

Continuing with the previous example, let’s assume that the vocabulary size is 1,000,000. The
downstream model will have to learn 1,000,000 weights and 1 bias. The weights increase
linearly with the vocabulary size. This is a disaster as vocabularies are huge. We will see later
that a vector representation can do using less than 1% of the weights and still achieve better
performance.

1.2 Vector Representation

The idea of vector representation is to project every word in the vocabulary to an 𝑛-dimensional
vector space. This projection is done such that similar words are close to each other; hence,
the location of the word and the values in the vector carry actual meaning about the word.
This allows us to utilize large amounts of language data to understand the semantics of words
and their relationships, simplifying any downstream task.

In the previous example, the model is no longer a lookup table but an actual model with
generalization ability that can learn from the encoded information in the vector. Now, the
model will be able to predict the class of “famine” because its vector is similar to that of
“hunger” and hence will have a close output.

2 Summarizing the Paper

The first thing I want to highlight about the paper is its publishing date: 2013. Computation
was expensive, models were small, and architectures were simple (no transformers yet). So as
highlighted in the name, the goal of the paper is to establish an efficient technique to generate
the vector representation.

At the time of publishing, the largest model made was trained on only a few hundred million
words and had a dimensionality of 50-100. Using their proposed architectures, the authors
succeeded in training on 6 billion words and a vector dimensionality of 300.

3

Two architectures are introduced: Continous Bag-of-Words (CBOW) and Continous Skip-
gram. The CBOW model predicts a token by projecting the 𝑁 preceding and the 𝑁 succeeding
token into their vector representation then summing them, normalizing the sum, and passing
it to a classifier. In their implementation, they used a log-linear classifier with 𝑁 = 4.

The Skip-Gram does the opposite by using a token to predict the neighboring ones. While
training a number 𝑅 is randomly selected from the range < 1; 𝐶 > where 𝐶 is a hyperparameter.
The 𝑅 preceding and succeeding tokens of the current token are predicted from the current
one.

Figure 1: CBOW and Skip-gram Architectures from the Paper

To test the quality of the vectors, the authors create a comprehensive test set containing five
types of semantic questions and nine types of syntactic questions. Each question is represented
as two-word pairs. For example, a common capital city question would have word pair 1
< 𝐴𝑡ℎ𝑒𝑛𝑠, 𝐺𝑟𝑒𝑒𝑐𝑒 > and word pair 2 < 𝑂𝑠𝑙𝑜, 𝑁𝑜𝑟𝑤𝑎𝑦 >. In this case, the model will be
tested by extracting the word whose vector is closest to

𝑣𝑒𝑐𝑡(𝐴𝑡ℎ𝑒𝑛𝑠) − 𝑣𝑒𝑐𝑡(𝐺𝑟𝑒𝑒𝑐𝑒) + 𝑣𝑒𝑐𝑡(𝑁𝑜𝑟𝑤𝑎𝑦)

and assigning the prediction as correct if and only if the word is 𝑂𝑠𝑙𝑜.

4

https://arxiv.org/abs/1301.3781

This summary skips a lot of details which we will discuss only as needed in the implementation
phase. We will implement the CBOW model.

3 Data Preparation

The dataset used in the paper is the Google News Corpus which contains 6 billion tokens. I
have not been able to find a copy of the dataset so I will use the WikiText2 dataset by Salesforce
which is much smaller allowing us to train the model quickly. We will use huggingface’s datasets
library to load the dataset. Without further ado, let’s start coding.

import nltk
import torch
import warnings
import numpy as np
import torch.nn as nn
from collections import Counter
from datasets import load_dataset
from nltk.tokenize import word_tokenize
from torch.utils.data import TensorDataset, DataLoader

warnings.filterwarnings("ignore")
nltk.download('punkt', quiet=True);

DATASET = "Salesforce/wikitext"
SUBSET = "wikitext-2-v1"

ds = load_dataset(DATASET, SUBSET)

train_ds = ds["train"]
test_ds = ds["test"]

len(train_ds), len(test_ds)

(36718, 4358)

The number above is the number of sentences in the train and test sets.

The first step is to define the method to tokenize the sentences. The paper did not mention
any specific method so I will use the default sentence tokenizer from the nltk library on the
lowercase version of the text. The tokenizer will split the text into words while maintaining
punctuation.

5

https://huggingface.co/datasets/Salesforce/wikitext

def tokenize(sentences):
"""
Tokenizes a list of sentences into words.
Args:

sentences (list of str): List of sentences to tokenize.
Returns:

list of list of str: List of tokenized sentences, where each sentence is a list of words.
"""
return [word_tokenize(sentence.lower()) for sentence in sentences]

The next step is to create the vocabulary. To do so we will use the top 𝑁 most frequent tokens
where 𝑁 is a hyperparameter. In the paper, the authors used a vocabulary size of 1,000,000
for a dataset of 6 billion tokens. We have a much smaller dataset so we will use a smaller
vocabulary size of 10,000.

We add two important tokens: <pad> and <unk>. The first is used to pad the input sequences
while the latter is used to represent unknown tokens, those out of the vocabulary.

PADDING_TOKEN = "<pad>"
UNK_TOKEN = "<unk>"
VOCAB_SIZE = 10000

def build_vocab(
corpus,
vocab_size=VOCAB_SIZE,
padding_token=PADDING_TOKEN,
unk_token=UNK_TOKEN,
tokenize_func=tokenize,

):
"""
Builds a vocabulary from the given corpus with size vocab_size.
Args:

corpus (list of str): List of sentences to build the vocabulary from.
vocab_size (int): Maximum size of the vocabulary.
padding_token (str): Token used for padding.
unk_token (str): Token used for unknown words.
tokenize_func (callable): Function to tokenize sentences into words.

Returns:
A tuple containing:
- vocab (list of str): List of most common vocab_size tokens.
- token_to_id (dict): Mapping from tokens to unique IDs.

6

- id_to_token (dict): Mapping from unique IDs to tokens.
"""
all_tokens = [

token for sentence_tokens in tokenize_func(corpus) for token in sentence_tokens
]
token_counts = Counter(all_tokens)
vocab = [token for token, _ in token_counts.most_common(vocab_size)]
token_to_id = {

token: idx + 2
for idx, token in enumerate(vocab)
if token not in [padding_token, unk_token]

}
token_to_id[padding_token] = 0
token_to_id[unk_token] = 1
id_to_token = {idx: token for token, idx in token_to_id.items()}
return vocab, token_to_id, id_to_token

vocab, token_to_id, id_to_token = build_vocab(train_ds["text"])

len(vocab), len(token_to_id), len(id_to_token)

(10000, 10002, 10002)

Note

Note that the length of token_to_id and id_to_token is greater than the vocabulary
size by 2 because of the two special tokens.

The model can’t comprehend the text directly and we have to convert each word to a numeric
id. We use the two dictionaries we created to convert the tokens to their corresponding IDs.

Due to the data, having very long sentences and very short sentences, even empty ones, we
will filter out any sentence with less than 4 tokens or greater than 256 tokens. This is a
hyperparameter that can be tuned later. The paper did not mention any specific method for
filtering the sentences so I will use this method.

Combining all the steps above, we are now ready to create a function to preprocess lists of
sentences.

7

MIN_LENGTH = 4
MAX_LENGTH = 256

def preprocess(
sentences,
token_to_id=token_to_id,
tokenize_func=tokenize,
min_length=MIN_LENGTH,
max_length=MAX_LENGTH,
unknown_token=UNK_TOKEN,

):
"""
Preprocesses a list of sentences by tokenizing and converting them to IDs.
Args:

sentences (list of str): List of sentences to preprocess.
token_to_id (dict): Mapping from tokens to unique IDs.
tokenize_func (callable): Function to tokenize sentences into words.
min_length (int): Minimum length of sentences to keep.
max_length (int): Maximum length of sentences to keep.
unknown_token (str): Token used for unknown words.

Returns:
- tokenized_sentences (list of list of str): List of tokenized sentences.
- sentences_ids (list of list of int): List of sentences represented as IDs.

"""
tokenized_sentences = tokenize_func(sentences)
tokenized_sentences = [

tokens
for tokens in tokenized_sentences
if len(tokens) >= min_length and len(tokens) <= max_length

]
sentences_ids = [

[token_to_id.get(token, token_to_id[unknown_token]) for token in tokens]
for tokens in tokenized_sentences

]
return tokenized_sentences, sentences_ids

train_tokens, train_ids = preprocess(train_ds["text"])
test_tokens, test_ids = preprocess(test_ds["text"])

Now we have all the sentences in form comprehensible by the model. What we have to prepare

8

now is the input and output for the model formatted in the way specified in the paper. For
each token, we get the 𝑁 preceding and 𝑁 suceedsucceedinging tokens and call them the
context and we call the token itself the target. The context is the input to the model and the
target is the output. The paper used 𝑁 = 4 so we will use the same value.

CBOW_WINDOW_SIZE = 4

def create_cbow_data(
token_ids, window_size=CBOW_WINDOW_SIZE, padding_token=PADDING_TOKEN

):
"""
Creates CBOW data from token IDs.
Args:

token_ids (list of list of int): List of sentences represented as IDs with shape (batch_size, seq_len). seq_len can be variable.
window_size (int): Size of the context window.
padding_token (str): Token used for padding.

Returns:
A tensor dataset containing context and target pairs. Context Shape: (L, 2 * window_size). Target Shape: (L,)
where L is the sum of the lengths of all sentences in token_ids.

"""
contexts = []
targets = []
for tokens in token_ids:

for i, target in enumerate(tokens):
start = i - window_size
end = i + window_size
context = [

tokens[j] if j >= 0 and j < len(tokens) else token_to_id[padding_token]
for j in range(start, end + 1)
if j != i

]
contexts.append(context)
targets.append(target)

return TensorDataset(
torch.tensor(contexts, dtype=torch.long),
torch.tensor(targets, dtype=torch.long),

)

cbow_train = create_cbow_data(train_ids)
cbow_test = create_cbow_data(test_ids)

9

4 Model Definition

We now extend PyTorch’s nn.Module class to create our model. This model will implement the
CBOW architecture but I will use a linear layer instead of a log-linear classifier for simplicity.
Another change is that all embeddings will have a max l2 norm of 1 to prevent the vectors
from exploding. In the paper, the sum of the embeddings was the one normalized.

We also define a method called get_embeddings which will return the embedding of a token
given its ID.

class CBOW(nn.Module):
"""
Continuous Bag of Words (CBOW) model for word embeddings.
Args:

vocab_size (int): Size of the vocabulary.
embedding_dim (int): Dimension of the word embeddings.
padding_idx (int): Index for the padding token.
normalize_embeddings (bool): Whether to normalize the embeddings.

"""
def __init__(

self,
vocab_size,
embedding_dim,
padding_idx=0,
normalize_embeddings=True,

):
super(CBOW, self).__init__()
max_norm = 1.0 if normalize_embeddings else None
self.embeddings = nn.Embedding(

vocab_size, embedding_dim, padding_idx=padding_idx, max_norm=max_norm
)
self.linear = nn.Linear(embedding_dim, vocab_size)

def forward(self, context):
embeddings = self.embeddings(context)
embeddings = torch.sum(embeddings, dim=1)
output = self.linear(embeddings)
log_probs = torch.log_softmax(output, dim=1)
return log_probs

10

def get_embeddings(self, token):
return self.embeddings(token)

cbow_model = CBOW(
vocab_size=len(token_to_id),
embedding_dim=300,
padding_idx=token_to_id[PADDING_TOKEN],

)

5 Training the Model

We first define the dataloaders. I will use a batch size of 256. You can change that based on
your GPU memory.

BATCH_SIZE = 256

device = (
"cuda"
if torch.cuda.is_available()
else "mps" if torch.backends.mps.is_available() else "cpu"

)

cbow_train_dataloader = DataLoader(
cbow_train,
batch_size=BATCH_SIZE,
shuffle=True,

)

cbow_test_dataloader = DataLoader(
cbow_test,
batch_size=BATCH_SIZE,
shuffle=False,

)

We will now create the training loop. Following the paper, we will use AdaGrad as the
optimizer and use a linear learning rate scheduler starting from 0.025 and decaying to 0 in the
end. We will also use 3 epochs to train the model.

11

def train_model(
model,
train_dataloader,
eval_dataloader=None,
epochs=1,
lr=0.025,
device="cpu",
verbose=True,

):
model = model.to(device)

optimizer = torch.optim.Adagrad(
model.parameters(),

)
criterion = nn.NLLLoss()
scheduler = torch.optim.lr_scheduler.LinearLR(

optimizer,
start_factor=lr,
end_factor=0.0,
total_iters=epochs * len(train_dataloader),

)

for epoch in range(epochs):
model.train()
for context, target in train_dataloader:

context = context.to(device)
target = target.to(device)
optimizer.zero_grad()
log_probs = model(context)
loss = criterion(log_probs, target)
loss.backward()
optimizer.step()
scheduler.step()

if eval_dataloader:
model.eval()
total_in_top_10 = 0
total_data_size = 0
with torch.no_grad():

for context, target in eval_dataloader:
context = context.to(device)
target = target.to(device)

12

log_probs = model(context)
top_10_predictions = torchhcchcc
.topk(log_probs, 10, dim=1).indices
total_in_top_10 += torch.sum(

torch.any(top_10_predictions == target.unsqueeze(1), dim=1)
)
total_data_size += len(target)

if verbose:
print(

f"Epoch {epoch + 1}/{epochs}: {total_in_top_10 / total_data_size:.4f} in top 10"
)

train_model(
cbow_model,
cbow_train_dataloader,
eval_dataloader=cbow_test_dataloader,
epochs=3,
device=device,

)

Epoch 1/3: 0.4458 in top 10
Epoch 2/3: 0.4424 in top 10
Epoch 3/3: 0.4413 in top 10

6 Conclusion

In this post, we implemented the CBOW model, a classic model introduced in the Word2Vec
paper. The goal of this post was to show a simple example of implementing a paper. I hope
you found this post helpful and helped you understand more about NLP.

13

	About Embeddings
	One-hot Encoding Problems
	Quality
	Cost

	Vector Representation

	Summarizing the Paper
	Data Preparation
	Model Definition
	Training the Model
	Conclusion

